RNTuple — The Next-Generation T Tree

Jakob Blomer, Philippe Canal, Javier Lopez Gomez
ROOT Workshop 2022, Fermilab

What is RNTuple?

Based on 25+ years of TTree experience, RNTuple is a redesigned |/O subsystem aiming at

= Less disk and CPU usage for the same data content

= 25% smaller files, x2-5 better single-core performance
= 10GB/s per box and 1 GB/s per core sustained end-to-end throughput
(compressed data to histograms)

= Systematic use of exceptions to prevent silent 1/O errors

Efficient support of modern hardware (built for multi-threading and async 1/0)

= Native support for object stores (see later)

O O I O

LUl ©CrEEEEEE NN
RNTuple work in progress in ROOT::Experimental RNTuple goes production, adoption phase

RNTuple — ROOT Workshop 2022 1/15

What is RNTuple?

Based on 25+ years of TTree experience, RNTuple is a redesigned 1/O subsystem aiming at

Less disk and CPU usage for the same data content

= 25% smaller files, x2-5 better single-core performance

= 10GB/s per box and 1 GB/s per core sustained end-to-end throughput
(compressed data to histograms)

Systematic use of exceptions to prevent silent |/O errors

Efficient support of modern hardware (built for multi-threading and async 1/0)
Native support for object stores (see later)

III 2020 2021 2022 2023 2024 2025 2026 2027

T

Note: TTree remains available in

ROOT but the focus of attenti‘on
will gradua\\y shift to RNTuple

RNTuple work in progress in ROOT::Experimental RNTuple goes production, adop

RNTuple — ROOT Workshop 2022 1/15

What are the benefits (1)? ﬁ

Size on disk, CMS Higgs4Leptons (84 branches)

kB / event
o O O
o N 0

o © © o o
a N W N~ o

o

RNTuple — ROOT Workshop 2022 2/15

https://github.com/jblomer/iotools/tree/acat21/compare
https://indico.cern.ch/event/855454/contributions/4596512/

What are the benefits (11)?

CMS Higgs4Leptons (10/84 branches)

uncompressed GB / s
o o o
D [<2) o) =

o
[N

Ceph-FS

LHCb B2HHH (10/26 branches)

wn
m 3
O
©25
(2]
(2]
(]
s 2
£
3
15
=}

=

o
o

HDF5/column

SSD

Ceph-FS

RNTuple — ROOT Workshop 2022

3/15

https://github.com/jblomer/iotools/tree/acat21/compare
https://indico.cern.ch/event/855454/contributions/4596512/

How can | try it?

= Take a ROOT package built with C++17 for access to the experimental classes

= Start with tutorials in tutorials/v7/ntuple, e.g. ntpl004_dimuon.C:

CMS Open Data fs=8TeV,L =116f"

Jhy
. Y(1,2,3S,
" ()

T
2
e

T

vl

1 10

RNTuple — ROOT Workshop 2022 4/15

RNTuple data in the browser

ROOT RBrowser A _ o x

1
Filter alc ® » e X +
File v Edit View v Options Tools v Help
YT size Drawing of RField fZ
W
> & ntploo3_lhcbOpenDataroot 453.5N = Entries 500000
16000— Mean 100.0
(=l ntplooa_dimuon.C 39K E Std Dev 9.988
(2] ntploos_introspection.C a5k 14000:_
v £ ntploos_introspection.root 10.4M. 12000:—
v il vector3;1 121 10000~
3 E
v <y 8000—
au E
6000—
aw -
=L ‘ 4000=—
ailxt 518 2000 —
aly:t 5% E o IR BN IR i, Ll
70 80 90 100 110 120 130 140
> & ntplooé_data.root 27M
{Elntploos_friends.C 27K S
Enter command
> & ntploo6_reco.root 956.0K
(D ntploo7_mtFill.c 46K
> & ntploo7_miFill.root 9.1M

RNTuple — ROOT Workshop 2022 5/15

Will | need to change my code? ﬁ

= For RDF analyses: one line

auto rdf = ROOT::Experimental::MakeNTupleDataFrame("Events", "data.root");

= ROOT's tooling for ROOT files

= RBrowser integration: available
= hadd support: coming this year
= Disk to disk converter TTree — RNTuple: coming this year

= Writing and RNTuple native reading: new API following modern C++ core guidelines

RNTuple — ROOT Workshop 2022 6 /15

RNTuple compile-time type-safe APl write example

// Unique pointer to a new data schema

auto model = RNTupleModel: :Create();

// Shared pointer to an std::vector<float>

auto fieldVpx = model->MakeField<std::vector<float>>("vpx");

auto ntplWriter = RNTupleWriter::Recreate(std::move(model), "Events", "data.root");

for (int i = 0; i < 1000; i++) {
int npx = gRandom->Integer(15);
fieldVpx->clear();
for (int j = 0; j < npx; ++j)
fieldVpx->emplace_back(gRandom->Gaus (0, 1));
ntplWriter->Fill();

// Auto-save and close when ntplWriter goes out of scope

RNTuple — ROOT Workshop 2022 7/ 15

RNTuple compile-time type-safe APl write example

// Unique pointer to a new data schema
auto model = RNTupleModel::Create();

// Shared pointer to an std::vector<float>

auto fieldVpx = model->MakeField<std::vector<float>>("vpx");

auto ntplWriter = RNTupleWriter::Recreate(std::move(model), "Events"

for (int i = 0; i < 1000; i++) {
int npx = gRandom->Integer(15);
fieldVpx->clear();

for (int j = 0; j < npx; ++j)
fieldVpx->emplace_back(gRandom->Gaus(0, 1));
ntplWriter->Fill();

// Auto-save and close when ntplWriter goes out of scope

RNTuple — ROOT Workshop 2022

, "data.root");

eWOrks' a
as well,

ssed as

For use in fram
void * AP\ exists
where types aré pa

strings

7/15

Advanced features

= Native object store support

= Intel DAOS HPC object store: available
= S3 cloud storage: coming

= Zero-copy merging on modern file systems: R&D

= Direct data transfer SSD — GPU & GPU accelerated decompression: R&D

RNTuple — ROOT Workshop 2022 8 /15

HPC object store motivation

Issues with traditional storage stack. . .

= Designed for spinning disks (few IOPS): I/O coalescing, buffering, etc., became less relevant for
modern devices — overhead

= Limitations in scalability for parallel filesystems

RNTuple — ROOT Workshop 2022 9/15

HPC object store motivation

Issues with traditional storage stack. . .

= Designed for spinning disks (few IOPS): I/O coalescing, buffering, etc., became less relevant for
modern devices — overhead

= Limitations in scalability for parallel filesystems

Hmmm... This

situation can be

improved!

RNTuple — ROOT Workshop 2022 9 /15

What is DAOS? ﬁ

= Modern fault-tolerant object store optimized for high bandwidth, low latency, and high IOPS.
Foundation of the Intel exascale storage stack

= Optimal use of storage-class memory and NVMe SSDs

= 1/0 of Argonne’s Aurora® supercomputer will be based on it

= Experience acquired supporting this in RNTuple can be reused for other object stores, e.g. Amazon
S3

While DAOS has a compatibility layer, e.g. a FUSE filesystem, RNTuple provides a backend that delivers
high performance.

1https://ald’.anl.gov/aulrora
RNTuple — ROOT Workshop 2022 10 / 15

How may object stores be used in HEP? ﬁ

= Next-generation datacenters may not use a filesystem to store to-be-processed / processed data

= In HEP, object stores will not probably be the permanent way of storing data; instead, we see them
as a temporary storage, e.g. for high-throughput distributed analysis

= Thus, quick population of object store with data is also important

RNTuple — ROOT Workshop 2022 11 /15

DAOS 101 ﬁ

DAOS pool DAOS object

key value

DAQOS container

SS ~ key value

= Object: to put it short, a Key—Value store with locality

= Object class: determines redundancy, e.g. replication/erasure code

RNTuple — ROOT Workshop 2022 12 /15

Do | have to change my code?

Only requires the replacement of the file path

auto ntuple = RNTupleReader: :0Open("DecayTree",
"./B2HHH~zstd.ntuple") ;

to a daos:// URI

auto ntuple = RNTupleReader: :0Open("DecayTree",
"daos://<POOL UUID>/<CONTAINER UUID>");

RNTuple — ROOT Workshop 2022 13 /15

Sl B RErs 2 BYAES (i ﬁ

Processing throughput [GB/s]

40¢
35;
30;
s = 800 GB dataset based on LHCB opendata
25 B2HHH
20; = Processed using distributed RDataFrame +
E RNTuple DAOS backend
15
s = 70% of the nominal bandwidth (48 GB/s) of
10; the cluster achieved
5
0: | | | | | | |

RNTuple — ROOT Workshop 2022 14 /15

http://opendata.cern.ch/record/4902
http://opendata.cern.ch/record/4902

Summary

ROOT RNTuple aims at a leap in data throughput

= Expect smaller files and significantly faster reads compared to T Tree

= Modern and robust API

= Capable of making efficient use of modern devices and storage systems
(such as SSD, object stores, many cores)

RNTuple is work in progress in ROOT: : Experimental.
(The on-disk format is still subject to small changes!)
We are happy to get your feedback!

RNTuple — ROOT Workshop 2022 15 /15

Backup Slides

Breakdown of the RN Tuple on-disk format

struct Event {
int fId;
vector<Particle> fPtcls;
18

FEs Boeticio & S Iannnalnnunslh B P s IR
.ot ==
) Header Page Page List Footer
vector<int> flds; | |
}; Cluster
‘ Cluster Group ‘
Cluster Page

= Block of consecutive complete events = Unit of (de-)compression and (un-)packing

= Defaults to 50 MB compressed = Defaults to 64 kB uncompressed

RNTuple Class Layering

Event iteration
Reading and writing in event loops
RDataFrame, RNTupleReader, RNTupleView, RNTupleWriter

= Storage access

= Physical: ROOT file container,
raw file, object store
= Virtual: “friend” and “chain”,

buffered writes

Primitives layer / simple types
“Columns” containing elements of fundamental types (float, int, ...) = Serialization of simple types and

grouped into (compressed) pages and clusters STL collections built-in — can be
RColumn, RPage

read without libCore

Storage layer / byte ranges
RPageSource, RPageSink, RCluster

RNTuple Class Layering

Event iteration
Reading and writing in event loops

Approximate class translation:

= Storage access

= Physical: ROOT file container,

TTree

RNTupleReader

RNTupleWriter raw file, object store
TTreeReader =~ RNTupleView = Virtual: “friend” and “chain”,
TBranch ~ RField buffered writes
“Column TBasket ~ RPage) = Serialization of simple types and

TTreeCache RClusterPool

STL collections built-in — can be

S

read without libCore

Storage layer / byte ranges
RPageSource, RPageSink, RCluster

libRNTupleLite

libROOTNTuple

libRIO

libROOTNTupleLite

libCore

libROOTIOLite

libROOTFoundation

. Depends on LLVM/cling

C Shim

The lite libraries are built just like any other
ROOT libraries in ROOT proper (including
modules, dictionaries etc)

The lite libraries do not use any infrastructure
from libCore but only from
libROOTFoundation

Contents of the lite libraries:

= RIOLite: RRawFile without support for
plugins, i.e. only local files

= ROOTNTupleLite: RPageSource,
RNTupleDescriptor (read-only)

RNTuple type system

[The RNTuple 1/0 supports arbitrary combinations of a well-defined set of C++ types]

= float, double

= int, unsigned int: 1, 2, and 4 bytes long

= std::string

= bool

= std::vector, ROOT: :RVec

= std::array

= std::variant

= Classes with dictionaries incl. (multiple) inheritance but w/o polymorphism

= Coming: enums, std: :pair, std: :set, intra-event references

/0 features: the essentials

Feature Status
Architecture-independent encoding available

C++ and Python support available (w/o pythonizations)
Transparent compression available

Fully checksummed

Columnar access

Horizontal data combinations (friends)
Vertical data combinations (chains)
Merging without uncompressing data
RDataFrame integration

RBrowser support

Remote access: HTTP and XRootD support
Async reading, parallel decompression
Multi-threaded writes

Schema evolution

On-demand schema extension (backfilling)
Support for application-defined metadata

coming soon

available

available (aligned only)
coming soon

coming soon

available

available

available

available

available (only compression parallelized)
coming soon

coming soon

coming soon

DAOS single-node throughput (HPE)

Write throughput, LHCB run 1 opendata B2HHH Read throughput, LHCB run 1 opendata B2HHH

0 —— dfuse (DAOS compatibility layer) »
(o oo}
O, 0.8] —— RNTuplelDAOS backend)
2 Ei 2.5
by 2
o 0.7 =)
= =1
IS [
< B d
F 06 =

0.5]

15
04
I-
03f
F 0.5
02 7‘/t
A
E 1 ! ! ! | ! !
128 512 896 1280 1664 2048 128 512 896 1280 1664 2048

RNTuple page size RNTuple page size

	Appendix
	Backup Slides

